26
Янв

Учёные построили точную модель части Солнечной системы внутри одного атома

Учёные построили точную модель части Солнечной системы внутри одного атома калия, раздутого до долей миллиметра. Такой трюк исследователи выполнили, чтобы показать интересные пересечения между квантовой и классической физикой.

Представление о том, что электроны вращаются вокруг ядра атома по чётким орбитам, словно шарики-планеты вокруг звезды, – устарело. Квантовая природа субатомных частиц и их дуализм (электрон – и частица, и волна одновременно) приводят к тому, что электроны будто размазываются вокруг ядра и физикам остаётся рассуждать только о вероятности их нахождения в том или ином месте, описывая частицы волновой функцией.

Однако, как оказалось, при определённых условиях электрон можно заставить бегать вокруг ядра почти что как планету, то есть – локализовать его, не нарушая связанности частей системы.

Экспериментаторы из университетов Райса, Венского технологического и американской национальной лаборатории в Окридже создали атом Ридберга, в котором электрон находился в высоковозбуждённом состоянии (на высоком энергетическом уровне).

Далее при помощи импульсов электрического поля учёные заставили волновую функцию электрона коллапсировать. Частица обратилась в локализованный волновой пакет, внешне напоминающий запятую (это были границы, где электрон может быть найден). В таком состоянии электрон продолжил обращение вокруг ядра, но на очень короткое время.

Физики же хотели заставить его бегать по орбите бесконечно, и так, чтобы не нарушалась целостность атома. Учёные приложили к атому вращающееся радиочастотное электрическое поле, передаёт PhysOrg.com. Поле захватило локализованный электрон (ту самую «запятую») и заставило синхронно обращаться вокруг ядра. Другой электрический импульс позволил сделать мгновенную «фотографию» такой экзотической системы

Правда, ридберговский атом в момент анализа разрушался. Но объединив данные по десяткам тысячам таких опытов, физики показали, что локализованный электрон ведёт себя в точности так же, как троянские астероиды Юпитера.

Последние находятся в точках Лагранжа на орбите Юпитера, и все вместе формируют две «запятые» (по форме похожие на локализованный волновой пакет), опережающие газовый гигант и отстающие от планеты в её пути вокруг Солнца.

И пусть поведение астероидов и планет описывается классической механикой, совпадение тут далеко не случайно. Знаменитый датский физик Нильс Бор ещё в 1920 году сделал прогноз об отношении между законами движения Ньютона и квантовой физикой.

«Бор предсказал, что квантовомеханическое описание физического мира для систем достаточного размера будет совпадать с классическим описанием, представленным ньютоновской механикой, — говорит лидер группы исследователей Барри Даннинг (Barry Dunning). — Бор также указал на условия, при которых это соответствие можно было бы наблюдать. В частности, такое совпадение должно проявляться в атомах с очень высоким значением главного квантового числа».

Именно это предсказание и подтвердили учёные. В их опытах главное квантовое число электрона в ридберговском атоме составляло от 300 до 600. «В таких возбуждённых состояниях атомы калия в сотни тысяч раз больше, чем обычно, и походят по размеру на точку в конце предложения, — объясняет Даннинг. — Таким образом, они являются хорошими кандидатами для проверки предсказания Бора».

Так же как волновой пакет в ридберговском атоме был захвачен комбинированным электрическим полем ядра и внешних волн, астероиды-троянцы контролируются совместным гравитационным полем Солнца и Юпитера, — продолжают проводить аналогию физики.

Подробности эксперимента можно найти – в статье в Physical Review Letters. В дальнейшем авторы этой работы хотят локализовать сразу два электрона и заставить их бегать вокруг ядра как две планеты – каждая по своей орбите.

Леонид Попов
membrana.ru

Интересуемся также:

Вы можете читать эту запись через RSS 2.0 поток.

Оставить мысль

Вы должны быть зарегистрироавны чтобы оставить комментарий.